
Molecular Diversity, 5: 13–24, 2000.
KLUWER/ESCOM
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

13

Comments on the design of chemical libraries for screening

Hugo O. Villar∗ & Ryan T. Koehler
Telik, Inc., Discovery Technologies Division, 750 Gateway Blvd., South San Francisco, CA 94080, U.S.A.

Received 7 May 2000; Accepted 16 June 2000

Key words:conformational flexibility, diversity analysis, diversity measure, library design, molecular descriptors,
molecular representation, pharmacophore representation, small molecule libraries

Summary

Different representations of molecules, based on distinct sets of properties can yield different perspectives of the
issues involved in library design. In particular, different chemical representations can give rise to very different
estimates of required library sizes. We provide a preliminary mathematical framework that examines the size of
libraries required to adequately sample the spaces corresponding to some commonly used property sets. Introduc-
tion of conformational flexibility is also discussed as a means of increasing coverage of chemical libraries, while at
the same time considering the thermodynamic consequences of flexibility upon detectable activity. Our theoretical
analysis reveals that the property spaces currently in use are extremely large and unlikely to provide adequate
discrimination among compounds.

Introduction

The design of chemical libraries for high through-
put screening has become an important problem in
modern drug discovery with the advent of high and
ultra-high throughput screening techniques [1]. The
ultimate goal of library design is the selection of com-
pounds for screening that maximize the chances of
identifying ligands for any given target, that could
possibly be developed into drugs [2].

The chances of identifying such ligands can be in-
creased when knowledge about the characteristics of
the target, or the ligands that bind to it, is exploited
to bias the selection process. However, many times
little is known about the target, or in other cases the
same library is to be adopted repeatedly for a num-
ber of unrelated targets. Under those circumstances,
the mind set in the field of library design has been
that no assumptions should be made regarding the
nature of the targets. Compound libraries should, thus,
be designed without preconceived notions about what
properties are desirable. These unbiased libraries in-
crease the chance that at least one of the compounds
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contained in it will complement the properties of an
arbitrary target. However, if the compounds are ulti-
mately to be used as drugs, certain biases are necessary
and helpful to limit the ranges and types of properties
to those relevant to pharmaceuticals [2]. Even within
these constraints maximal variability of the properties
is important to maximize the chances of success.

Methods that use the structural or physicochem-
ical properties of the molecules in the library are
the most commonly used for diversity analysis [3–
10]. These computational methods have been very
valuable in removing improper biases or redundan-
cies as libraries are assembled. Each property type or
set of molecular descriptors studied defines a distinct
type of chemical representation, and provides a differ-
ent interpretation of chemical diversity. Compounds
that appear diverse in one representation may well be
considered similar in another. Among the most com-
mon representations [3–7], discrete-valued descriptors
derived directly from features of chemical structure,
such as structural keys, have been frequently applied
[11]. Continuous-valued global properties [6,7] de-
rived from chemical structure have also been used,
with examples that include physicochemical paramet-
ers such as log P and topological indices. To encode
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the spatial relationship among atoms, or properties that
are a function of such arrangement, features of three-
dimensional (3D) structure models are used [3,9]. A
‘property space’ is then formed from the union of mo-
lecular descriptors chosen for study. Ideally, a well
designed library should saturate the chosen property
space, without overly populated regions, but perhaps
with vacant regions tailored in to avoid combinations
of properties incompatible with drugs [2].

Diversity analysis has been limited, with a few
exceptions [12,13], to the properties of small mo-
lecules in isolation. Nevertheless, the ability of the
molecules to interact with a macromolecular target
depends on multiple factors, some of which are bey-
ond the scope of the isolated molecular descriptors.
These factors, which are missed by simple structural
or physicochemical representations of the molecules
in isolation, have been considered extensively in the
context of biophysical studies and structure based drug
design but are seldomly invoked in relation to library
design [14,15]. Identification of ligands for a given
target will be limited by the free energy of the inter-
action between the molecules, but this is only partly
encoded in the simpler properties describing a ligand
in isolation.

The goal of library design could be taken bey-
ond avoiding redundancy, to increase the chances of
identifying a ligand. Because the goal is to identify po-
tentially interesting new molecules, other constraints
in addition to those imposed by drug compatibility
should be considered. In particular, compounds likely
to suffer significant energetic penalties upon inter-
action with a macromolecule should be disfavored
during the process of designing a library.

A key factor affecting the ability of a ligand to in-
teract productively with a macromolecule is its flexib-
ility. Library design literature has only paid peripheral
attention to this issue [16]. Most steric and electronic
properties of small molecules are dependent on the
conformation. Flexible compounds may therefore be
expected to sample a significantly larger number of
properties and pharmacophore arrangements than ri-
gid ones, and consequently should be more likely to
accommodate the requirements of any target. This ar-
gument is compelling and it is tempting to conclude
that flexible ligands should be preferred to rigid ones
when selecting compounds for a generic screening
library. However, flexible molecules need to over-
come significant energetic penalties [17,20] in order to
achieve the conformation(s) required for target bind-

ing, which may effectively render them inactive at a
preset concentration.

This manuscript has two purposes. We want to ana-
lyze how different property spaces alter our perception
of how complete or close to saturation a given lib-
rary is. Limits on the number of molecules required
to completely cover the property space correspond-
ing to different chemical representations are discussed.
The study is complemented with some comments on
the influence that conformational flexibility has on the
ability to cover a selected property space.

Coverage of the property space

The importance attributed to molecular diversity as
a tool for library design stems from our belief that
the larger the fraction of a relevant property space
that is covered, the greater the chance that the library
will contain hits capable of complementing any ran-
dom target. Different sets of descriptors and properties
may be employed to describe molecules for use in the
design of chemical libraries and each of these different
sets will lead to different impressions of how complete
a given library is. Hence, the number of molecules
that is required to sufficiently cover a property space
is an open question. It will depend on the descriptors
and similarity metrics chosen as well as the desired
compound density, among other factors.

Two-dimensional binary representation
Descriptors encoding structural features of two-
dimensional (2D) chemical graphs, such as structural
keys, have been used with some success in differ-
ent aspects of library design and the selection of
compounds for screening [6,21]. Structural keys [11]
typically take the form of a binary array, where each
array element represents the presence or absence of
a specific 2D fragment in a given molecule. For a
molecule M this is represented by:

M = (m1,m2,m3,m4,...,mn), (1)

where mi = 1 if the structural feature associated with
the i-th position in the array is present and 0 other-
wise. The number of structures that are required to
completely cover chemical space in this representation
is given by:

n∑
j=1

n!
j![n− j]! , (2)



15

where n is the dimension of the array. The assumption
is that each of the elements of the array is independent.
If all the possibilities are enumerated, then the number
of structures required for complete coverage is 2n. In
the case of the MDL MOLSKEYS [22], a widely used
set that have given good results in the past [6], there
are 166 distinct feature bits. For the case with n = 166
the number of different possibilities is approximately
1050 and even larger key sets have been analyzed.

In general, small molecules cannot possibly con-
tain all of the different features encoded in structural
key bits simultaneously. Indeed, only a fraction of
discriminated features are actually present in most
molecules, and consequently only a fraction of the
corresponding keys are set in a small molecule. If only
k elements could be set at any one time then for an
array of dimension n, the total number of possibilities
is given by:

k∑
j=1

n!
j![n− j]! (3)

As a practical example let’s analyze the number
of features encoded by the MDL MOLSKEYS [22]
that occur in a sample of 4000 compounds from the
comprehensive medicinal chemistry (CMC) database
(MDL, Inc., San Leandro, CA) or 10 000 chemicals
from the Maybridge library (Maybridge Chemical Co,
Ltd, Cornwall, U.K.). Figure 1 shows a distribution
of the count of bits set for records for these different
databases. The average number of encoded features,
i.e. bits, encountered per compound in the CMC set
is 44, out of 166 possible. Less than 1% of the chem-
icals sampled have more than 78 or less than 16 bits
on. Results are similar for the Maybridge collection.
Restricting ourselves to only those possibilities with
16 to 78 bits on (i.e. j = 16, k = 78 in Equation 3),
the total number of possibilities is still on the order of
1049.

Therefore, even when a substantial restriction on
the number of elements that may be set simultaneously
is taken into account, the number of compounds that
may be discriminated is still a large fraction of all
possible representations. The number of different pos-
sibilities is truly enormous and consequently the space
will inevitably be sparsely populated, regardless of lib-
rary size. In any case, an analysis of this type is useful
to help avoid marked redundancies in the libraries.

The dimensionality of the problem is the issue,
and vectors of 166 elements will yield corresponding
spaces that are extremely large, regardless of other
restrictions. Attempts to focus on only a fraction of

the properties, e.g. by considering a subset of the
bits, have been made, but mostly to assess similarity
[21,23]. Reductions in the number of features could
provide more realistic property spaces, but care must
be taken to ensure that encoded features are selected
to maximize the information relevant to a given task,
such as drug discovery. However, at this stage our
knowledge about chemical diversity as it relates to the
drug discovery problem is in its infancy and signific-
ant work needs to be done before such tasks may be
expected to succeed.

Global molecular representation
Global molecular properties have a long tradition as
descriptors in QSAR and have been employed for
library design [6,24]. Contrary to structural key rep-
resentations, where features are represented as discrete
bits, these properties generally take on continuous
values. Some global molecular properties such as
octanol–water partition coefficient (logP), pKa or to-
pological indices are routinely used to identify sim-
ilar compounds. Because of the continuous nature
of the properties, quantifying the number of com-
pounds required to saturate a corresponding property
space requires some subjective judgment about the
required density of sampling for each property. One
way to choose an appropriate density is to assume
that compounds with properties falling within cer-
tain value ranges are similar enough to be considered
equivalent [3]. The specific ranges of property val-
ues in which compounds can be considered equivalent
will, of course, depend on the property considered.
Value ranges chosen for each property determine how
densely that dimension of property space will be
populated.

Each property may warrant sampling at different
resolutions. In some cases, presence or absence of a
certain property may be considered sufficient to dis-
criminate molecules, while in other cases, the property
should be more finely sampled. In the past, global
properties have been normalized and used in combin-
ation with principal component analysis as a means to
reduce the dimensionality of the problem [6]. In such
cases, all resulting dimensions should in principle be
equally populated.

Ascribing property values to discrete ranges per-
mits simplification of the counting process because
this reduces each property dimension to a finite num-
ber of elements. This process of ‘binning’ continuous
properties has been put forward in the past to ana-
lyze chemical diversity [3]. In such a representation,
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Figure 1. Percentage of molecules as a function of the number of bits set in the MOLSKEYS representation. The solid line shows 4000
compounds from the cmC database, while the dashed line shows the values for 10 000 compounds from the Maybridge collection.

a library with compounds in all bins provides an even
sampling of the property space. We will adopt the
binning concept of continuous valued properties, as it
simplifies the counting process.

As an example, a scalar molecular property p with
values that can range between p0 and pt can be divided
into n segments. If these all have the same length, then
1p = (p0–pt)/n. Once discretized, the property may
then be represented by a binary array:

P = (b0, b1, b2, ..., bn), (4)

where bi = 1 if p∈ [p0 + (i–1)1n, p0 + i1n), oth-
erwise bi = 0. Thus, the vector that represents that
property for that molecule has a single 1 in a position
in the array that corresponds to the range within which
the value of the property p falls. Assuming there are m
properties P, a description of the molecule M results
from a combination of the property vectors.

M= P1 U P2 U P3 U...U Pm (5)

M is a sparse vector with exactly m elements equal to
1 and the remaining null.

Because each property Pj can be divided into dif-
ferent numbers of segments bj, the total number of

molecules necessary to cover all property space, using
the density desired for each property is given by:

m∏
j=1

bj, (6)

where m is the total number of properties being con-
sidered. For example, suppose 12 independent prop-
erties (or the first 12 principal components of a larger
property space [6]) are each equally divided into 10
bins. This corresponds to dimension of m = 12, di-
mension of n = 10 (for each), dimension of m =
120, and each representation having exactly 12 bits
set. In this case the total number of molecules that is
required to completely cover the space is 1012. Typic-
ally, the number of properties and ranges considered
for these spaces are still extremely large, compared to
the size of current chemical collections, even if orders
of magnitude smaller than the structural keys.

Pharmacophore-based representation
Molecules are, of course, 3D entities where shape and
conformation generally relate to the possibility of hav-
ing a productive interaction with the macromolecular
target. Accordingly, numerous approaches based on
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this relation have been devised for the definition of
property spaces to be used for diversity assessment.
Pharmacophore-based diversity measures, where 3D
arrangements of chemical groups in space are used
to derive descriptors, have been implemented [3]. In
fact, several groups have used the number of three
or four point pharmacophores represented in a col-
lection of compounds as a diversity criterion [25].
Pharmacophore centers are typically those associated
with properties involved in intermolecular interac-
tions. Commonly, hydrogen bond donor and acceptor
sites, positively or negatively charged centers and
lipophilic rings are singled out.

In general, distances among pharmacophoric cen-
ters will vary in a continuous fashion among com-
pounds (and conformations). When the variations
between two different pharmacophore distances are
small, the two may be considered equivalent, as done
in the case of global properties. The equivalency of
structures leads to a finite number of distinct pharma-
cophore arrangements, and allows us to parallel the
analysis directly from that of continuous global prop-
erties. Binning of pharmacophore patterns is used in
the major commercial software for diversity analysis
based on pharmacophores [25,26].

The arrangement of pharmacophore centers in 3D
space is normally expressed in terms of the distances
among those centers. With the exception of mirror im-
age effects, the overall arrangement of points may be
defined by specifying, for each unique pair of centers,
both the type of interaction and the corresponding dis-
tance. If P kinds of pharmacophore properties (H-bond
donor, H-bond acceptor, etc.) are considered, then the
number of uniquetypesof pairwise interactions that
can be described is given by:

nP = P(P+1)/2 (7)

Ranges of distances for the same pair of properties can
be considered equivalent, and therefore the pairwise
distances can be binned. Figure 2 illustrates such a
pharmacophore key. Two hydrogen donor centers (H),
a hydrogen bond acceptor (N), and a lipophilic cen-
ter represent a scheme of a pharmacophore contained
in a hypothetical molecule. All possible distances are
binned into five groups. If P1 is hydrogen bond accept-
ors, P2 is hydrogen bond donors and P3 is lipophilic
centers, the first 15 elements of the pharmacophoric
key are shown (corresponding to P11, P12, P13); the
later 15 are not shown (corresponding to P22, P23 and
P33).

The dimension of the key required to distinguish
the different types of interactions is, for any given
number of properties P, binned into b groups:

Nkey = b·P(P+1)/2 (8)

This is the number of unique types of interactions
considered times the number of equivalent bins.

For simplicity, this formulation merely discrim-
inates between the presence or absence (1 or 0) of
a specific type of pairwise arrangement and will not
keep track of the number of occurrences of such ar-
rangements. The conclusions would be magnified if
the number of occurrences were taken into account.

Generally speaking, a pharmacophore may involve
any number of centers, each center is identified with
any one of the P pharmacophore properties. Thus,
the term ‘A-point pharmacophore’ is used to denote
an arrangement of A pharmacophore centers in 3D
space. Every triangle in Figure 2 shows a 3-point
pharmacophore, while the entire figure represents a
4-point pharmacophore. 3-Point pharmacophores, or
pharmacophore triangles, have been used routinely for
a number of years for library design [3,26], while
4-point pharmacophores have more recently been im-
plemented [25].

If we restrict ourselves to A-point pharmaco-
phores, then the number of pairwise arrangements that
define the pharmacophore key is given by:

nA = A(A–1)/2 (9)

Each 3-point pharmacophore (A = 3) has 3 dis-
tances that define it (n3 = 3), while a 4-point phar-
macophore has 6 pairwise distances (n4 = 6). Note
that Equation 9 differs in form from Equation 7 be-
cause pairwise counts of pharmacophore centers to
themselvesare notconsidered, whereas arrangements
between two distinct centers of the same pharmaco-
phore typeare counted. The nA pairs of centers may
or may not give rise to nA uniquetypes of pairwise
arrangements, if there is redundancy. For example,
if every center in the pharmacophore is a hydrogen
bond donor, then there is only one type of pairwise
arrangement accounted for in the pharmacophore key.
Assuming that A≤P, then an A-point pharmacophore
may give riseat mostto nA unique types of pairwise
interactions.

When figuring the number of distinct bits to set
in a pharmacophore key, distance must also be con-
sidered. Each arrangement is associated with one of
b different distance categories, so even if every cen-
ter in the A-point pharmacophore is a hydrogen bond
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Figure 2. Scheme of a pharmacophore, and its pharmacophore key. N represents a hydrogen bond acceptor (P1), H a hydrogen bond donor
(P2), the hexagon a lipophylic center (P3), and the pairwise distances are grouped into 5 bins (b). Only the first terms of the pharmacophore
key for such a scheme are shown.

donor, multiple bits may still be set if more than one
distance category is encountered. However, if a mo-
lecule contains only one distance bin for all equivalent
centers (all hydrogen bond donors), only one element
of the pharmacophore key will be set on. These are
two extreme cases and all intermediate situations are
also possible. Therefore, nA is the upper bound for
the number of distinct bits that may be set for an A-
point pharmacophore. A-point pharmacophores can
have any number of bits set between 1 and nA but no
more.

If we know that an A-point pharmacophore sets
exactly j distinct bits, then the number of different
bit patterns that could be generated is given by the
binomial coefficient:

mj = Nkey!
j!(Nkey− j)! =

b·P(P+ 1)/2]!
j![b·P(P+ 1)/2− j]! (10)

Knowing that j can take on values between 1 and
nA, the number of different A-point pharmacophores
that can be distinguished in this representation is:

NA−point =
nA∑
j=1

mj =
A(A−1)/2∑

j=1

[b·P(P+ 1)/2]!
j![b·P(P+ 1)/2− j]!

(11)

The expression corresponds to the number of pos-
sible combinations of bits that could be set on for an
A-point pharmacophore, when P properties are used
and binned into b-pairwise bins. The expression gives
the number of compounds that could be differentiated
in pharmacophore-based representations.

Equation 11 has a stronger dependence on the
number of pharmacophore properties (P) than on the
number of pharmacophore points (A) involved. Fig-
ure 3 shows how the log of NA−point varies as a
function of both P and A when the number of distance
bins is 10 for typical values of P and A.

While Equation 11 provides the number of distinct
A-point pharmacophores in this representation, it does
not indicate the number of compounds that would nor-
mally be required to cover all of these possibilities or
saturate the property space. A molecule could con-
tain multiple A-point pharmacophores, as in Figure 2,
the scheme represents a molecule with 4 possible 3-
point pharmacophores. If a molecule contains a total
of C centers which can be ascribed to any of the P
pharmacophore properties, then the number of A-point
pharmacophores found in these structures (assuming
C≥A) is given by

NC,A = C!
A!(C− A)! (12)
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Table 1. Average properties of 4000 com-
pounds selected from the CMC database

Property Average

Molecular weight 357

Number of rings 2.6

Number of H-bond donors 2.0

Number of H-bond acceptors 5.9

Number of nitrogens 2.1

Number of oxygens 3.3

Number of carbons 18.5

An analysis of a selected list of compounds from
the Comprehensive Medicinal Chemistry database
(MDL Inc., San Leandro, CA) was done in order to
determine typical values for C (Table 1). Consider-
ing just hydrogen bond donor and acceptor centers,
as well as rings that may comprise lipophilic centers,
C is found to be approximately 10 for compounds
in the CMC database. An average molecule would
thus contain 120, 3-point and 210, 4-point pharmaco-
phores.

From a different angle, some general empirical
rules have been put forward in the literature regard-
ing the structural characteristics of compounds with
optimal physicochemical properties for drug develop-
ment [27]. The rules impose limits on the physico-
chemical properties of the molecules that could be
viable for drug development. The most common rules
[27] impose four constraints on compounds, as they
should have less than 5 hydrogen bond donors, less
than 10 hydrogen bond accepting centers, molecular
weights of less than 500, and a cLogP (partition coef-
ficient) of less than 5. Limits on the total numbers of
pharmacophores result from their application. For ex-
ample, since the sum of hydrogen bond donors and
acceptors may not be larger than 15, the maximum
number of 4-point pharmacophores is 1365, according
to Equation 12. Because the total molecular weight is
also constrained to 500, it is hard to envision com-
pounds that satisfy the rules with 15 centers in total,
including lipophilic areas. Thus, the overall number of
pharmacophores that can be represented in pharmaco-
logically viable molecules is relatively small to make
a significant impact in the size of library.

In general, the pharmacophore properties of C cen-
ters in a given molecule will not all be distinct, and
so the associated A-point pharmacophores may be
indistinguishable. A given 3D arrangement of phar-
macophore centers may occur more than once in a

single molecule. As Equation 11 before, Equation
12 provides only an upper bound for the number
of unique A-point pharmacophores that could come
from a particular compound. Nevertheless, Equation
12 would be exact if each pharmacophore found is
unique, and if we further assume that each compound
examined provides a collection of pharmacophores
that is distinct from all of the other compounds in
the library, then an estimate of theminimumnumber
of molecules required to cover all A-point pharmaco-
phores is afforded:

NA−point

NC,A
=

A!(C− A)!
C!

A(A−1)/2∑
j=1

[b·P(P+ 1)/2]!
j![b·P(P+ 1)/2− j]! (13)

This function shows a stronger dependence on the
number of properties (P) that are considered than on
the number of pharmacophore centers (A). Consider-
ing 3-point pharmacophores and four property types
leads to a number of molecules on the order of half
a million compounds (see also [3]). This is the size
of many current libraries. As more complex pharma-
cophores, or additional properties are considered, the
number of potential compounds required to sample
the entire space defined grows extremely fast. Since
the term that premultiplies Equation 13 is small com-
pared to the summation, the rate of growth is similar
to that shown in Figures 3a and 3b for the summations
alone. Even when a reasonable number of proper-
ties and pharmacophoric points are considered, the
numbers of possibilities continue to be overwhelm-
ing. In part this is the reason why chemical libraries
have increased but the potency of the compounds does
not parallel the increase in library size. An increase
in potency would require an increase in the number
of pharmacophoric points matched, which is not lin-
ear with the total number of compounds required to
sample the space. The order of magnitude of these
numbers also reveals the enormity of the task faced by
medicinal chemistry. If medicinal chemistry were car-
ried out completely at random, it would be very hard
to increase the potency of compounds. By experience,
medicinal chemists have generated a process that fol-
lows an implicit approach to optimizing the variables
involved.

Consideration of conformational flexibility on the
part of the ligand can alter our estimate of the
minimum number of molecules needed for cover-
age provided by Equation 13, as it will increase the
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Figure 3. Decimal logarithm of the estimate of the minimum number of molecules required to cover all A-point pharmacophores considering P
properties, according to Equation 13. In all cases C = 10 and b = 10. (a) as a function of the number of points considered for the pharmacophore,
when P = 4; (b) as a function of the number of classes of atomic centers considered, when A = 4. The equation shows strong dependence with
both variables, slightly more pronounced with the number of properties (P) considered.

average number of different pharmacophores per mo-
lecule, effectively increasing coverage of the chemical
space for the same number of compounds.

Effects of conformational freedom

Conformational flexibility on the part of the ligand
should increase the coverage of a property space that
includes descriptors that encode 3D features of mo-
lecules. This is because flexible molecules will be
able to sample a larger number of different pharmaco-

phores than rigid ones, as every unique placement of
atoms in space may yield a new set of arrangements
of pharmacophore centers. Flexibility enhances the
chances that a given molecule may adopt a favorable
spatial positioning of atoms to complement a target. It
also changes the ranges of values that any conforma-
tionally dependent 3D property may adopt. Flexibility
will increase the coverage of an A-point pharmaco-
phore space afforded by a given number of molecules
when compared to the case where flexibility is absent
or ignored.
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The increase in property space coverage afforded
by flexibility is a function of the total number of con-
formers present in each molecule. If each conformer
were to yield a completely unique arrangement of
pharmacophore centers, Equation 12 could simply be
multiplied by the number of conformers per molecule.
This situation is seldom the case, because subsets of
pharmacophoric centers can remain in the same rel-
ative orientations in different conformations, resulting
in equivalent pharmacophores being obtained. Thus,
the total number of pharmacophores sampled by a mo-
lecule will generally be smaller than the number of
conformers present multiplied by Equation 12, but this
quantity provides again an upper limit, which in turn
bounds the minimum number of molecules that are ne-
cessary to completely cover property space. The lower
boundary provided by Equation 13 can be rewritten as:

NA−point

NC,A
=

1

nconf

A!(C− A)!
C!

A(A−1)/2∑
j=1

[b·P(P+ 1)/2]!
j![b·P(P+ 1)/2− j]! ,

(14)
where nconf is the average number of conformers
generated by each molecule.

Still the number of molecules required is reduced,
but in addition conformational flexibility can be a
problem in the design of libraries.

Free energy penalty and conformational flexibility
The chance of finding a hit or a lead in a library
is determined by a preselected cut-off value for ac-
cepting a compound as a hit in the assay. Depending
on the targets and other assay specific criteria, those
cut-offs may typically be set between 20µM and sub-
micromolar. These different potency criteria translate
into different minimum free energy (1G) values that
need to be achieved for a compound to be detected as
a hit (1Gdet), according to [28]:

1G = – RT ln Ki (15)

If the inhibition constant Ki corresponds to the cut-off
set for that assay, then1G corresponds to1Gdet.

For every 10-fold increase in the cut-off,1Gdet is
increased by 1.5 kcal/mol. This energy is on the or-
der of approximately an additional interaction between
ligand and target when the decrease in entropy and
changes in solvation are taken into consideration [27].
If covering an A-point pharmacophore space is re-
quired to ensure that a hit will be found at the 10µM

level, increasing the cut-off value for Ki by 10-fold
to 1 µM implies that an A+1 pharmacophore space
should be covered to ensure the existence of a hit.
This is because an additional interaction between the
receptor and the ligand should be fixed.

When small molecule libraries are composed of
equivalent compounds in terms of average number
of pharmacophore centers present, additional energy
terms allow us to compare the free energy of binding
for flexible ligands to otherwise equivalent rigid ones.
One term is the internal energy difference between
bound and free states (1Gconf), and the other is the dif-
ference due to loss of conformational entropy (1Gloss)
upon binding.

For a significant number of ligands, the conform-
ational energy penalty,1Gconf, has been found to be
less than 3 kcal/mol [20], but it may be larger in some
cases. The loss of conformational entropy (1Gloss =
–T 1Sloss) is also significant and has been found to
be, on average, 0.5 to 0.7 kcal/mol per degree of free-
dom restrained upon binding [17]. For any molecule
to be detected in a screening assay the detection limit
becomes [17]:

1Gdet≥ 1Gint + 1Gconf + 1Gloss (16)

For a rigid molecule, the last two terms are null. There-
fore, if two molecules were able to interact with the
target in such a way that they generate a similar free
energy of interaction (1Gint), the more flexible mo-
lecule would not be detected because it would have to
pay an additional penalty to reach the detection level.

As an example, let’s assume that the threshold is
set to be equivalent to a Ki of 10 µM, then,1Gdet
must be lower than –7.1 kcal/mol. For a rigid mo-
lecule, a1Gint of –7.1 kcal/mol would be sufficient for
detection. But for an equivalent flexible molecule each
degree of conformational freedom that is lost upon
binding requires that1Gint increases by at least 0.7
kcal/mol in order for the molecule to be detected. If the
molecule loses two degrees of freedom,1Gint should
be –8.5 kcal/mol. Molecules that on average lose two
degrees of freedom upon binding incur a penalty sim-
ilar to increasing the detection cut-off by one order of
magnitude in rigid molecules.

The magnitude of energies we have been discuss-
ing is, coarsely speaking, that typically associated with
a single hydrogen bond (1.4 kcal/mol) [29]. One way
to compensate for the penalty imposed by the loss of
conformational freedom is by picking up at least one
additional point of ligand-target interaction. The pen-
alty is even larger when1Gconf is not null, which is
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the most common occurrence, and may account for 3
kcal/mol in a majority of the interactions [20]. Cer-
tainly, changes in the free energy of solvation and
other factors could compensate, but then the molecules
could not be regarded as equivalent.

One way to compensate for the energy penalty
stemming from greater degrees of freedom associated
with flexible ligands is to increase the number of in-
teractions to reach the preset1Gdet. For instance, if
the level of detection for a rigid molecule could be at-
tained with four interactions (4-point pharmacophore),
an otherwise equivalent flexible molecule that lost two
degrees of freedom upon binding to the target would
require five interactions to reach the detection level.
The penalty imposed by two degrees of conforma-
tional flexibility makes it necessary to have a larger
number of matching interactions to ensure detection.
Therefore, a larger number of pharmacophore points
are necessary to ensure that flexible compounds will
be detected in a library.

The difference between A-point pharmacophores
and the (A+1), i.e. the amount necessary to approxim-
ately offset the loss of two degrees of freedom can be
derived from Equation 14:

1

Nconf
=

A!(C− A)!
C!

A(A+1)/2∑
j=A(A−1)/2+1

[b·P(P+ 1)/2]!
j![b·P(P+ 1)/2− j]!

(17)
With typical values of P = 5, b = 10 and all triangle
pharmacophores (A = 3), the additional number of
pharmacophore configurations that are needed to en-
sure a saturated library would be on the order of 106.
The situation becomes worse when larger numbers of
degrees of conformational flexibility are considered.

At the same time, the maximum contribution a
flexible molecule could make to the total number
of pharmacophores is proportional to the number of
unique conformers, provided that each of these con-
tributes a new pharmacophore.The number of phar-
macophore configurations that are required to ensure
the additional interaction that has to be picked up
because of the entropy loss, cannot be compensated
by the number of conformers added by a flexible
molecule. Two degrees of conformational freedom
provide a smaller fraction of the 4-point pharmaco-
phore possibilities than a library of the same number
of rigid compounds provides for a 3-point pharmaco-
phore, both of which are able to reach an equivalent

level of detection. Since the coverage is less, it is also
less likely that the right compound will be found for
an arbitrary target when a flexible library is used.

Conclusions

The different representations that are used to study
chemical diversity generate a larger number of possib-
ilities than the size of the most ambitious real libraries.
Typically used triangle pharmacophores provide the
possibility to discriminate over half a million com-
pounds, and libraries of this size are in use for
high throughput screening [3]. Other representations
provide vast spaces that can seldom be covered, and
could bring into question even their effectiveness in
removing redundancy at the level of today’s screening
libraries.

Conformational flexibility is not the solution to the
problem of increasing the coverage of property space
for a chemical library. Indeed, in those cases, the
loss of conformational flexibility of the ligands upon
binding imposes a penalty on the free energy of in-
teraction that is, on average, equivalent to having an
additional point of interaction for every two degrees of
freedom lost upon binding. If a three-center pharmaco-
phore is sufficient to produce a productive interaction
between a rigid small molecule and a macromolec-
ule, a library with compounds of about two degrees
of freedom will require 4-point pharmacophore in-
teractions. With two additional degrees of freedom,
a library provides significantly smaller coverage of
the 4-point pharmacophore space than a library of
the same number of rigid compounds provides for a
3-point pharmacophore.

The complementary idea that making molecules
rigid increases the affinity of a compound for the tar-
get, provided the elements of the pharmacophore are
kept intact, is widely used in medicinal chemistry [30].
Numerous examples exist of enhancement of the affin-
ity when the conformational flexibility is decreased.
Significant conformational flexibility may hinder our
ability to detect a productive interaction.

Our analysis is of a coarse nature, when the phar-
macophore representations are considered. The most
significant shortcoming of the analysis is that it as-
sumes that only one type of molecule or pharmaco-
phore is able to generate an appropriate interaction
with the binding site. Indeed, the same sites can be
inhibited by many different molecules in radically dif-
ferent ways, even when they are structurally related.
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The large numbers of molecules resulting from our
estimates do not reflect the ability of the binding sites
to alter their conformations and adapt to a potential
partner via induced fit. Certain sites are clearly unique
in their ability to bind promiscuously, as is the case for
most metabolizing enzymes, reflecting their ability to
recognize multiple pharmacophores. Therefore, Equa-
tion 14 should also be divided by the average number
of A-point pharmacophores that a binding site con-
tains, even when the conformational flexibility of the
site is considered. However, evaluating such numbers
is not a trivial task and requires a systematic evalu-
ation of the characteristics of binding sites. Even if the
magnitude of the numbers produced with the pharma-
cophore analysis is not precise, the trends and relative
values should be accurate.

Even with those limitations, the analysis reveals
some of the problems with our approach to diversity
analysis. Defining exactly which properties are most
relevant to the problem at hand is still a critical aspect
of the analysis. Significantly different representations
can be obtained using different types of molecular
properties. The large numbers that follow from all of
these descriptions are to some extent a reflection of the
inadequacy of the properties widely in use.

Finally, it is clear that when designing libraries,
rigid compounds should be preferred. Flexible com-
pounds have to pay an additional energy penalty that
is not required from rigid ligands, which would make
it harder to reach a pre-set detection cut-off, as usu-
ally done in high throughput screening. The concept
is not new, but the magnitude of the penalty imposed
in terms of compounds necessary to achieve a similar
probability of success can be surprising.
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